

داده کاوی **Data Mining**

Lecturer: A. Rabiee azrabiee@gmail.com Rabiee.iauda.ac.ir

منابع و مرامع

Main Reference:

-Larose, Daniel T. Discovering knowledge in data: an introduction to data mining. John Wiley & Sons, 2014.

Other References:

- Han, Jiawei, Micheline Kamber, and Jian Pei. Data mining: concepts and techniques. Elsevier, 2011.
- Tan, Pang-Ning, Michael Steinbach, and Vipin Kumar. Introduction to data mining. Vol. 1. Boston: Pearson Addison Wesley, 2006.

مرامع فارسى

- دکتر مهدی اسماعیلی، مفاهیم و تکنیکهای داده کاوی
- ژیاوی هان، میشلین کامبر و ژان پی، داده کاوی، ترجمه دکتر نسترن حاجی حیدری و بهنام خاکباز
 - دكتر محمدحسين نديمي، مريم تاكي و فاطمه حبيب اللهي، داده كاوي، مفاهيم و كاربردها

Larose's book, table of content

- Chapter 1: Introduction
- · Chapter 2: Data Preprocessing
- Chapter 3: Exploratory Data Analysis
- Chapter 4: Statistical Approaches
- Chapter 5: k-Nearest Neighbor algorithm
- Chapter 6: Decision trees
- Chapter 7: Neural Networks
- · Chapter 8: Hierarchical k-means Clustering
- Chapter 9: Kohonen Networks
- Chapter 10: Association Rules
- Chapter 11: Model Evaluation Techniques

_

ارزشیابی درس

Final Exam: 50
Assignments: 20
Final Project + Presentation: 30
Paper (optional): +15

Chapter 1:

Introduction to Data Mining

Table of Contents

- Definition
- · Why DM?
- · CRISP-DM
- Data mining tasks
 - Description
 - Estimation
 - Prediction
 - Classification
 - Clustering
 - Association

Definition

- Data mining
 - Extraction of interesting (<u>non-trivial</u>, <u>implicit</u>, <u>previously</u>
 <u>unknown</u> and <u>potentially useful</u>) patterns or knowledge
 from huge amount of data
- Alternative names
 - Knowledge discovery (mining) in data (KDD),
 - knowledge extraction,
 - data/pattern analysis
 - **–** ..

Data Mining

- "one of the most revolutionary developments of the next decade," according to the online technology magazine ZDNET News (2001)
- the MIT Technology Review (2001) chose data mining as one of 10 emerging technologies that will change the world.

9

Data Mining: Core of knowledge discovery process

What is (not) Data Mining?

What is not Data Mining?

- Look up phone number in phone directory
- googling

What is Data Mining?

- Certain names are more prevalent in certain country locations
- Group together similar documents, according to their context

Mining Large Data Sets - Motivation

- There is often information "hidden" in the data that is not readily evident
- Human analysts may take weeks to discover useful information
- · Much of the data is never analyzed at all

From: R. Grossman, C. Kamath, V. Kumar, "Data Mining for Scientific and Engineering Applications"

Origin of Data Mining

- Draws ideas from machine learning/AI, pattern recognition, statistics, and database systems
- Traditional Techniques may be unsuitable due to
 - Enormity of data
 - High dimensionality of data
 - Heterogeneous, distributed nature of data

13

CRISP—DM CRoss-Industry Standard Process

- A standard process for fitting data mining into the general problemsolving strategy of a business or research unit
- 6 phases

CRISP-DM CRoss-Industry Standard Process

Data Mining Tasks

- Description
- Estimation
- Prediction
- · Classification
- Clustering
- Association

Market Basket Analysis

Description

- DM can be used for describing patterns and trends lying within data
 - Example: finding a pattern for distribution of a virus
- => Exploratory data analysis (EDA), chapter 3

17

Classification

Classification

- k-nearest neighbor (Chapter 5)
- Decision tree (Chapter 6)
- Neural network (Chapter 7)

Income classification

Subject	Age	Gender	Occupation	Income Bracke
001	47	E	Software engineer	High
002	28	M	Marketing consultant	Middle
003	35	M	Unemployed	Low
*				

Graphs and plots are helpful for understanding two- and three-dimensional relationships in data.

10

Classification

• Which drug should be prescribed for which type of patient?

Classification examples

- Determining whether a particular credit card transaction is fraudulent
- Placing a new student into a particular track with regard to special needs
- Assessing whether a mortgage application is a good or bad credit risk
- Diagnosing whether a particular disease is present
- Determining whether a will was written by the actual deceased, or fraudulently by someone else
- Identifying whether or not certain financial or personal behavior indicates a possible terrorist threat
- •

2

Estimation

Example: Estimating the grade-point average (GPA) of a graduate student, based on that student's undergraduate GPA

Estimation Examples

- Estimating the amount of money a randomly chosen family of four will spend for back-toschool shopping this fall.
- Estimating the number of points per game that Patrick Ewing will score.
- Estimating the grade-point average (GPA) of a graduate student, based on that student's undergraduate GPA.

• ...

23

Difference of Estimation and Classification?

Numeric

Categorical

Prediction

Predicting the price of a stock three months in the future.

25

Prediction

- Any of the methods and techniques used for classification and estimation may also be used for prediction.
 - simple linear regression and correlation, and multiple regression (Chapter 4)
 - k-nearest neighbor (Chapter 5)
 - Decision tree (Chapter 6)
 - Neural network (Chapter 7)

– ..

Prediction Examples

- Predicting the price of a stock three months into the future
- Predicting the percentage increase in traffic deaths next year if the speed limit is increased
- Predicting the winner of this fall's baseball World Series, based on a comparison of team statistics
- Predicting whether a particular molecule in drug discovery will lead to a profitable new drug for a pharmaceutical company

• ...

27

Clustering

- In contrast to the classification, it's unsupervised
- Maximizing the similarity within the clusters, minimizing the similarity between clusters
- k-means clustering (Chapter 8)
- Kohonen networks (Chapter 9)

Clustering Example

- Grouping the clothes in a store based on the size
- Segmentation of financial behaviors into safe and suspicious categories
- As a dimension-reduction tool when the data set has hundreds of attributes
- For gene expression clustering, where very large quantities of genes may exhibit similar behavior
- ..

29

Association

A priori & GRI algorithms (Chapter 10)

market basket analysis

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

Rules Discovered:
{Milk} --> {Coke}
{Diaper, Milk} --> {Beer}

Association examples

- Investigating the proportion of subscribers to a company's cell phone plan that respond positively to an offer of a service upgrade
- Examining the proportion of children whose parents read to them who are themselves good readers
- Predicting degradation in telecommunications networks
- Finding out which items in a supermarket are purchased together and which items are never purchased together
- Determining the proportion of cases in which a new drug will exhibit dangerous side effects

• ...

31

Case Studies

- Case Study 1: Analyzing automobile warranty claims
- · Case Study 2: Predicting abnormal stock market
- Case Study 3: Mining association rules
- Case Study 4: Predicting corporate bankruptcies
- · Case Study 5: Profiling the tourism market

Hint!

- Data mining is easy to do badly
 - Because of the easy-to-use GUI-based tools
- => White-box approaches instead of the black-box or blind methods

33

Homework 1: Analyzing a paper

- Find a data mining paper (preferably from 2010 to 2016)
- Discuss the 6 steps of CRISP-DM on the paper